
 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

158

SMART AGRICULTURE YIELD FORECASTER: AI-BASED

PREDICTION USING IOT SENSOR DATA

Gummuluri Harshitha,

UG Student,

Department Of CSE,

St. Martin’s Engineering College,

Secunderabad, Telangana, India.

:gummuluriharshitha@gmail.com

Abstract: The main economic activity is agriculture. It is

necessary for maintaining the ecosystem. Almost every

element of people's life is dependent on a vast range of

agricultural products. In addition to responding to climate

change, farmers must handle the rising need for more food of

higher quality. Farmers must be aware of the weather

conditions in order to boost agricultural output and growth

because this will allow them to choose the best crop to sow in

those conditions. Smart farming powered by IOT improves the

entire agricultural system with real-time field monitoring. It

displays numerous parameters in crystal-clear real-time,

including temperature, humidity, and soil, among others. It is

possible to recommend crops by using the right algorithms on

sensed data. The project intends to develop a system that

predicts agricultural productivity using Internet of Things

sensors that collect data on numerous environmental factors,

such as temperature, rainfall, and pH.

The suggested method seeks to help farmers boost agricultural

productivity while decreasing waste and boosting profitability.

The project's provision of reliable and timely information

about crop yields is one of its primary goals. Farmers now

make manual estimates of agricultural production, which can

be tedious and imprecise. The proposed system might employ

IoT sensors to collect data in real-time, giving farmers precise

and current information on crop yields. One of the other

objectives of the project is to deal with the unpredictable

nature of weather patterns. Weather patterns have become

more erratic as a result of climate change, making it difficult

for farmers to schedule when to plant and harvest their crops.

By examining current practices and adapting them to the

current weather patterns, farmers can boost

Dr. M. Vadivukarassi,

Associate Professor,

Department Of CSE,

St. Martin’s Engineering College,

Secunderabad, Telangana, India.

drmvadivukarassicse@smec.ac.in

crop yields and decrease waste with the help of the suggested

approach. Using machine learning algorithms and

environmental data gathered by IoT sensors, the suggested

method forecasts crop output. Machine learning algorithms

can analyse large datasets and generate precise projections that

assist farmers in making decisions. The system can be used by

farmers with any degree of technological competency because

it is accessible and user-friendly. Farmers may easily access

and examine the data collected by the Internet of Things

sensors thanks to the user-friendly system interface.

Additionally, the system has the ability to provide farmers

with immediate feedback, allowing them to alter their

agricultural practices in reaction to the current environmental

conditions.

I.INTRODUCTION

Agriculture is the backbone of India's economy, employing

nearly 42% of the workforce and contributing around 18% to

the nation's GDP. With a population exceeding 1.4 billion,

ensuring food security is a major challenge. Traditional

farming methods are vulnerable to erratic monsoons, soil

degradation, and inefficient resource utilization. India’s

agricultural yield fluctuates due to factors like climate change,

soil fertility, and pest infestations. According to the Indian

Council of Agricultural Research (ICAR), climate change

could reduce wheat yields by 6-23% by 2050 if adaptive

measures are not taken. IoT-based smart farming is emerging

as a solution to address these issues by integrating real-time

monitoring with AI-driven predictions. By leveraging sensors

to track soil moisture, temperature, and rainfall, farmers can

make data-driven decisions to optimize crop selection and

maximize productivity. The adoption of precision farming

mailto:gummuluriharshitha@gmail.com
mailto:drmvadivukarassicse@smec.ac.in

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

159

techniques has shown promising results, with studies

indicating a 20-30% increase in yield efficiency through data-

driven approaches. AI and IoT provide an opportunity to

transform traditional farming into a smart, sustainable, and

high-yielding system, ensuring food security and reducing

losses.

Predicting crop yield based on the environmental, soil, water

and crop parameters has been a potential research topic. Deep-

learning-based models are broadly used to extract significant

crop features for prediction [4]. Early plant disease

identification is an initial step in preventing the spread of

diseases and pests Alharbi, & Aldossary, [5]. To detect

diseases, the type of crop was identified first because the

disease type changed to different crops. Conventional plant

disease and pest identification techniques rely on manual

observation and evaluation. It has low efficiency and accuracy

during detection Bouali, et al.,[6].

More technologies such as computer vision, remote sensing,

unmanned aerial vehicle (UAV), and IoT devices are

supplying new tools for plant disease detection based on

automated image recognition Farooq, et al.,[7]. Hence, quality

enhancement methods are needed to improve image

excellence, which increases the computational complexity.

III. PROPOSED WORK

Step 1: Agricultural Yield Dataset

The first step involves acquiring the agricultural yield dataset,

which contains valuable data regarding various environmental

factors such as temperature, humidity, soil conditions, and

historical yield records. This dataset is essential for developing

an AI model to predict future agricultural productivity based

on current environmental conditions. The dataset typically

includes columns for features like rainfall, temperature, soil

pH, and past crop yield, which will be used to train and

evaluate machine learning models. The data is loaded into the

system and displayed to the user for further analysis and

processing.

Step 2: Data Preprocessing

Data preprocessing is a crucial step where the dataset is

cleaned and prepared for analysis. The first task is to examine

the dataset for any null or missing values. These values can

distort the accuracy of predictions, so they need to be handled

either by filling them with appropriate values (mean, median)

or removing the rows. Next, a description of the dataset is

generated, providing statistics like mean, standard deviation,

min, and max values for numerical features. Additionally, the

unique values for categorical features are assessed, ensuring

that the data is properly formatted and ready for machine

learning algorithms.

Step 3: Existing Random Forest Regressor

In this step, the Random Forest Regressor (RFR) algorithm is

implemented as a baseline model to predict agricultural yields

based on the preprocessed data. RFR is an ensemble learning

method that builds multiple decision trees and averages their

predictions for a more accurate result. The model is trained

using the training data and then evaluated on the test set. The

performance of the model is measured using metrics such as

Mean Absolute Error (MAE), Mean Squared Error (MSE),

and R-squared (R²). The trained model is then saved for later

use and comparison.

Step 4: Proposed DAE + Gradient Boosting Regressor

The next step proposes a more advanced approach combining

a Denoising Autoencoder (DAE) and Gradient Boosting

Regressor (GBR). The DAE is first used to encode the input

data into a lower-dimensional representation, removing noise

and enhancing the feature set for better predictive

performance. Afterward, the Gradient Boosting Regressor is

employed to make predictions based on the encoded data. This

combination of deep learning (DAE) and gradient boosting

ensures that both the complex, non-linear relationships in the

data and the efficiency of boosting techniques are leveraged

for more accurate yield predictions.

Step 5: Performance Comparison Graph

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

160

Once both models (Random Forest Regressor and DAE +

Gradient Boosting Regressor) are trained and evaluated, their

performance metrics are compared. This step involves

generating a performance comparison graph to visualize the

results. The key metrics, such as MAE, MSE, RMSE, and R²

score, are plotted for both models, allowing for a clear and

concise comparison of their predictive capabilities. This graph

serves as a critical analysis tool to determine which model

performs better in terms of accuracy and reliability for

predicting agricultural yields.

Step 6: Prediction of Output from Test Data with DAE +

Gradient Boosting RegressorAlgorithm

In the final step, the trained DAE + Gradient Boosting

Regressor model is used to predict agricultural yield on unseen

test data. The test data is pre-processed similarly to the

training data, including feature scaling and transformation

using the DAE encoder. The model then predicts the yield for

each test instance. The predicted results are appended to the

test dataset, and the predictions are displayed for review. This

step allows farmers or users to assess the model's performance

in a real-world scenario and provides them with actionable

insights based on the system's predictions.

Fig. 4.1: Block diagram of proposed system.

4.2 Workflow

Data Preprocessing: Data preprocessing is a critical phase in

any machine learning project, especially when working with

real-world datasets. It ensures that the data is clean, consistent,

and ready for use in training machine learning models. In the

context of the agricultural yield prediction project, data

preprocessing involves several steps:

Data Splitting: Data splitting is another essential aspect of

preparing data for machine learning, as it helps evaluate the

model’s performance on unseen data. In this project, the

dataset is divided into two main subsets: the training set and

the test set.

Training Set: The training set is used to train the model. It

contains a large portion of the dataset and allows the model to

learn the relationships between the features and the target

variable (in this case, agricultural yield). The model uses this

data to adjust its parameters and fit the underlying patterns in

the data.

Test Set: The test set is used to evaluate the model's

performance after training. It contains data that the model has

not seen before, simulating real-world conditions where the

model will encounter new, unseen data. By comparing the

predicted values with the actual values in the test set, we can

measure the accuracy and generalization ability of the model.

Train-Test Split Ratio: In this project, the dataset is split into

80% training data and 20% test data using the train_test_split

function. This ensures that the model has enough data to learn

from, while also being evaluated on a sufficiently large set of

test data to ensure it generalizes well.

Resampling (Optional):In some cases, the dataset might be

imbalanced, meaning that certain categories (e.g., low yield

vs. high yield) are underrepresented. To address this,

resampling techniques, such as oversampling the minority

class or undersampling the majority class, can be used to

ensure that the model is trained on a balanced dataset. This

step is optional and depends on the nature of the data.

Python

Python is an interpreted high-level programming language for

general-purpose programming. Created by Guido van Rossum

and first released in 1991, Python has a design philosophy that

emphasizes code readability, notably using significant

whitespace.

Python features a dynamic type system and automatic memory

management. It supports multiple programming paradigms,

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

161

including object-oriented, imperative, functional and

procedural, and has a large and comprehensive standard

library.

• Python is Interpreted − Python is processed at

runtime by the interpreter. You do not need to

compile your program before executing it. This is

similar to PERL and PHP.

• Python is Interactive − you can actually sit at a

Python prompt and interact with the interpreter

directly to write your programs.

Python also acknowledges that speed of development is

important. Readable and terse code is part of this, and so is

access to powerful constructs that avoid tedious repetition of

code. Maintainability also ties into this may be an all but

useless metric, but it does say something about how much

code you have to scan, read and/or understand to troubleshoot

problems or tweak behaviors. This speed of development, the

ease with which a programmer of other languages can pick up

basic Python skills and the huge standard library is key to

another area where Python excels. All its tools have been

quick to implement, saved a lot of time, and several of them

have later been patched and updated by people with no Python

background - without breaking.

Modules Used in Project

TensorFlow

TensorFlow is a free and open source software library for dataflow

and differentiable programming across a range of tasks. It is a

symbolic math library and is also used for machine learning

applications such as neural networks. It is used for both research and

production at Google.

TensorFlow was developed by the Google Brain team for

internal Google use. It was released under the Apache 2.0

open-source license on November 9, 2015.

NumPy

NumPy is a general-purpose array-processing package. It provides a

high-performance multidimensional array object, and tools for

working with these arrays.

It is the fundamental package for scientific computing with

Python. It contains various features including these important

ones:

• A powerful N-dimensional array object

• Sophisticated (broadcasting) functions

• Tools for integrating C/C++ and Fortran code

• Useful linear algebra, Fourier transform, and

random number capabilities

Besides its obvious scientific uses, NumPy can also be used as

an efficient multi-dimensional container of generic data.

Arbitrary datatypes can be defined using NumPy which allows

NumPy to seamlessly and speedily integrate with a wide

variety of databases.

Matplotlib

Matplotlib is a Python 2D plotting library which produces

publication quality figures in a variety of hardcopy formats

and interactive environments across platforms. Matplotlib can

be used in Python scripts, the Python and IPython shells, the

Jupyter Notebook, web application servers, and four graphical

user interface toolkits. Matplotlib tries to make easy things

easy and hard things possible. You can generate plots,

histograms, power spectra, bar charts, error charts, scatter

plots, etc., with just a few lines of code. For examples, see the

sample plots and thumbnail gallery.

For simple plotting the pyplot module provides a MATLAB-

like interface, particularly when combined with IPython. For

the power user, you have full control of line styles, font

properties, axes properties, etc, via an object-oriented interface

or via a set of functions familiar to MATLAB users.

Scikit – learn

Scikit-learn provides a range of supervised and unsupervised

learning algorithms via a consistent interface in Python. It is

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

162

licensed under a permissive simplified BSD license and is

distributed under many Linux distributions, encouraging

academic and commercial use. Python

Python is an interpreted high-level programming language for

general-purpose programming. Created by Guido van Rossum

and first released in 1991, Python has a design philosophy that

emphasizes code readability, notably using significant

whitespace.

Python features a dynamic type system and automatic memory

management. It supports multiple programming paradigms,

including object-oriented, imperative, functional and

procedural, and has a large and comprehensive standard

library.

• Python is Interpreted − Python is processed at

runtime by the interpreter. You do not need to

compile your program before executing it. This is

similar to PERL and PHP.

• Python is Interactive − you can actually sit at a

Python prompt and interact with the interpreter

directly to write your programs.

Python also acknowledges that speed of development is

important. Readable and terse code is part of this, and so is

access to powerful constructs that avoid tedious repetition of

code. Maintainability also ties into this may be an all but

useless metric, but it does say something about how much

code you have to scan, read and/or understand to troubleshoot

problems or tweak behaviors. This speed of development, the

ease with which a programmer of other languages can pick up

basic Python skills and the huge standard library is key to

another area where Python excels. All its tools have been

quick to implement, saved a lot of time, and several of them

have later been patched and updated by people with no Python

background - without breaking.

IV. RESULTS & DISSCUSSION

The research involves building an AI-powered system for

predicting agricultural yield using IoT sensor data. The

following steps outline the process of implementing this

system:

1. Data Collection

IoT sensors are deployed in agricultural fields to collect real-

time data such as soil moisture, temperature, humidity, light

intensity, and other environmental factors. This data is

captured and stored in a database for further processing.

2. Data Preprocessing

Cleaning: Missing or corrupted data is handled by removing

or imputing the missing values. Outliers and erroneous values

are also detected and corrected.

Normalization: The sensor data is normalized to ensure

consistency and scale across all features. This step helps to

bring all data into a similar range, improving the model's

performance.

Feature Engineering: Additional features, such as time of

day, soil type, and weather conditions, are created or extracted

from the existing data. This step helps to enrich the dataset

and provide more meaningful information for the model.

Data Splitting: The dataset is divided into training,

validation, and test sets. Typically, 70% of the data is used for

training, 15% for validation, and 15% for testing the model.

This ensures that the model is evaluated on unseen data to

assess its generalization capability.

3. Model Building

Existing Model: Random Forest Regressor

A Random Forest Regressor is trained on the preprocessed

data. It learns from multiple decision trees, each trained on a

different subset of the data and features. The output of all trees

is averaged to make the final prediction.

The model is tuned by adjusting hyperparameters such as the

number of trees, maximum depth of trees, and minimum

samples per leaf to improve performance.

Proposed Model: DAE + Gradient Boosting Regressor

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

163

Denoising Autoencoder (DAE):

The DAE is trained to reconstruct clean data from noisy input.

The model learns compressed representations of the input

features by reducing noise and extracting relevant patterns

from the sensor data.

The encoder part of the autoencoder is used to produce a latent

representation of the data, which serves as the input for the

Gradient Boosting Regressor.

Gradient Boosting Regressor:

The Gradient Boosting Regressor is trained on the features

extracted by the DAE. It sequentially builds decision trees,

where each tree attempts to correct the residuals of the

previous tree. The final prediction is made by combining the

outputs of all trees in the sequence.

4. Deployment

● The final model is deployed as part of a web-based

dashboard or mobile application, where farmers can

input sensor data and receive real-time yield

predictions.

● Continuous updates are implemented to improve the

model’s performance by incorporating new data and

adjusting the model based on feedback and new

environmental conditions.

5. Monitoring and Maintenance

● The performance of the deployed model is

continuously monitored to ensure its effectiveness in

real-world conditions.

● Regular updates and retraining are performed using

new data collected from the IoT sensors to keep the

model accurate and relevant over time.

The dataset consists of various agricultural parameters that

influence crop yield. Each record represents an instance of

agricultural data for a specific field, including information

about soil quality, seed variety, fertilizer usage, weather

conditions, and irrigation schedule. The columns in the dataset

are described as follows:

Yield_kg_per_hectare:

The yield column contains the output of the crops, measured

in kilograms per hectare. This is the target variable in the

dataset and represents the crop yield, which depends on

several factors like soil quality, seed variety, fertilizer

application, weather conditions,and

Irrigation practices.

Fig. 1: Upload of Agricultural Yield Dataset

Fig. 1 demonstrates the process of uploading the agricultural

yield dataset into the graphical user interface (GUI) of the

system. The dataset, which contains key agricultural variables

such as soil quality, seed variety, fertilizer amount, sunny

days, rainfall, irrigation schedule, and yield per hectare, is

loaded into the system. Upon upload, the dataset is displayed

within the GUI for further analysis. This step is crucial for the

user to interact with and review the raw data before any

processing or modeling begins. The dataset is shown in a

tabular format within the interface, providing easy access to

all attributes and their values for inspection and validation.

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

164

Fig. 2: EDA Plots of the Project

Fig. 2 presents the exploratory data analysis (EDA) plots

generated as part of the project. These plots provide an initial

understanding of the relationships between various features in

the dataset and the target variable (yield per hectare). The

visualizations include correlation heatmaps, distribution plots,

and scatter plots to identify patterns, trends, and potential

outliers in the data. The EDA is essential for uncovering any

underlying data issues and ensuring the dataset's suitability for

modeling. It helps in visualizing how features such as soil

quality, seed variety, and fertilizer amount affect yield and

aids in identifying the most relevant features for model

training.

Fig. 3: Data Preprocessing in the GUI

Fig. 3 illustrates the data preprocessing stage within the GUI

interface. In this step, the system processes the dataset to

handle missing values, scale numerical features, and split the

data into training and testing sets. The GUI provides an

interactive display where users can inspect the preprocessing

results, such as the number of missing values for each feature

and the distribution of scaled values. The preprocessing phase

prepares the data by normalizing numerical values and

ensuring consistency before feeding it into the machine

learning models. It also includes the splitting of the dataset

into training and testing sets, with an 80-20 split, ensuring that

the model is evaluated on unseen data.

Fig. 4: Performance Metrics and Regression Scatter Plot of

Random Forest Regressor Model

Fig. 4 presents the performance metrics and regression scatter

plot for the Random Forest Regressor model. The performance

metrics include the Mean Absolute Error (MAE), Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), and

R-squared (R²), which quantify the model's prediction

accuracy. For the Random Forest Regressor, the MAE is

0.0506, the MSE is 0.0040, the RMSE is 0.0633, and the R²

score is 0.8235, indicating a good fit to the data with a fairly

strong explanatory power. The regression scatter plot visually

represents the model’s predictions against the true values, with

points scattered around the line of equality (ideal predictions).

This plot shows the model's ability to predict yield values

accurately across the test data.

Fig. 5: Performance Metrics and Regression Scatter Plot of

DAE + Gradient Boosting Regressor Model

Fig. 5 shows the performance metrics and regression scatter

plot for the Optimized DAE + Gradient Boosting Regressor

model. The performance metrics highlight the superior

predictive capabilities of this hybrid model compared to the

Random Forest Regressor. The MAE is 0.0249, the MSE is

0.0011, the RMSE is 0.0329, and the R² score is 0.9523,

indicating a significantly better fit and higher accuracy. The

regression scatter plot illustrates the improved predictions of

the DAE + Gradient Boosting Regressor model, with the

predicted values closely aligning with the actual values. This

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

165

visual representation emphasizes the enhanced prediction

accuracy of the DAE + Gradient Boosting approach.

Fig. 6: Model Prediction on Test Data

Fig. 6 showcases the model’s predictions on the test data.

After training the machine learning models, the system makes

predictions on a separate test dataset that was not used during

the training process. The results are displayed within the GUI,

allowing users to compare the predicted yield values with the

actual values from the test data. The test data contains unseen

instances, and the model’s ability to predict the yield values

accurately is crucial for assessing its generalization capability.

This figure highlights the practical application of the model in

real-world scenarios, where the model's predictions can inform

decision-making processes in agriculture.

Fig. 7: Performance Comparison Graph of All Models

Fig. 7 provides a performance comparison graph that contrasts

the results of all models used in the project. This includes the

Random Forest Regressor and the Optimized DAE + Gradient

Boosting Regressor. The graph visualizes the performance of

each model based on key metrics such as MAE, MSE, RMSE,

and R² score. It demonstrates the clear performance advantage

of the Optimized DAE + Gradient Boosting Regressor model,

which shows lower error metrics and a higher R² score

compared to the Random Forest Regressor. The comparison

graph is an essential tool for evaluating the effectiveness of

different modeling approaches and selecting the most suitable

one for predicting agricultural yields.

REFERENCES

1. Malina, L.; Hajny, J.; Dzurenda, P.; Ricci, S. Lightweight

Ring Signatures for Decentralized Privacy-preserving

Transactions. In Proceedings of the 15th International

Joint Conference on e-Business and Telecommunications,

Porto, Portugal, 26–28 July 2018; pp. 526–531.

2. Mettler, M. Blockchain technology in healthcare: The

revolution starts here. In Proceedings of the 2016 IEEE

18th International Conference on e-Health Networking,

Applications and Services (Healthcom), Munich,

Germany, 14–17 September 2016.

3. Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P.

Blockchain for IoT security and privacy: The case study

of a smart home. In Proceedings of the 2017 IEEE

International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops),

Kona, HI, USA, 13–17 March 2017; pp. 618–623.

4. Zhang, J.; Xue, N.; Huang, X. A Secure System For

Pervasive Social Network-Based Healthcare. IEEE

Access 2016, 4, 9239–9250.

5. Zhu, X.; Badr, Y. Identity Management Systems for the

Internet of Things: A Survey Towards Blockchain

Solutions. Sensors 2018, 18, 4215.

6. Yue, X.; Wang, H.; Jin, D.; Li, M.; Jiang, W. Healthcare

Data Gateways: Found Healthcare Intelligence on

Blockchain with Novel Privacy Risk Control. J. Med.

Syst. 2016, 40, 218.

