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Abstract: The main economic activity is agriculture. It is 

necessary for maintaining the ecosystem. Almost every 

element of people's life is dependent on a vast range of 

agricultural products. In addition to responding to climate 

change, farmers must handle the rising need for more food of 

higher quality. Farmers must be aware of the weather 

conditions in order to boost agricultural output and growth 

because this will allow them to choose the best crop to sow in 

those conditions. Smart farming powered by IOT improves the 

entire agricultural system with real-time field monitoring. It 

displays numerous parameters in crystal-clear real-time, 

including temperature, humidity, and soil, among others. It is 

possible to recommend crops by using the right algorithms on 

sensed data. The project intends to develop a system that 

predicts agricultural productivity using Internet of Things 

sensors that collect data on numerous environmental factors, 

such as temperature, rainfall, and pH.  

The suggested method seeks to help farmers boost agricultural 

productivity while decreasing waste and boosting profitability. 

The project's provision of reliable and timely information 

about crop yields is one of its primary goals. Farmers now 

make manual estimates of agricultural production, which can 

be tedious and imprecise. The proposed system might employ 

IoT sensors to collect data in real-time, giving farmers precise 

and current information on crop yields. One of the other 

objectives of the project is to deal with the unpredictable 

nature of weather patterns. Weather patterns have become 

more erratic as a result of climate change, making it difficult 

for farmers to schedule when to plant and harvest their crops. 

By examining current practices and adapting them to the 

current weather patterns, farmers can boost  
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crop yields and decrease waste with the help of the suggested 

approach. Using machine learning algorithms and 

environmental data gathered by IoT sensors, the suggested 

method forecasts crop output. Machine learning algorithms 

can analyse large datasets and generate precise projections that 

assist farmers in making decisions. The system can be used by 

farmers with any degree of technological competency because 

it is accessible and user-friendly. Farmers may easily access 

and examine the data collected by the Internet of Things 

sensors thanks to the user-friendly system interface. 

Additionally, the system has the ability to provide farmers 

with immediate feedback, allowing them to alter their 

agricultural practices in reaction to the current environmental 

conditions. 

I.INTRODUCTION 

Agriculture is the backbone of India's economy, employing 

nearly 42% of the workforce and contributing around 18% to 

the nation's GDP. With a population exceeding 1.4 billion, 

ensuring food security is a major challenge. Traditional 

farming methods are vulnerable to erratic monsoons, soil 

degradation, and inefficient resource utilization. India’s 

agricultural yield fluctuates due to factors like climate change, 

soil fertility, and pest infestations. According to the Indian 

Council of Agricultural Research (ICAR), climate change 

could reduce wheat yields by 6-23% by 2050 if adaptive 

measures are not taken. IoT-based smart farming is emerging 

as a solution to address these issues by integrating real-time 

monitoring with AI-driven predictions. By leveraging sensors 

to track soil moisture, temperature, and rainfall, farmers can 

make data-driven decisions to optimize crop selection and 

maximize productivity. The adoption of precision farming 
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techniques has shown promising results, with studies 

indicating a 20-30% increase in yield efficiency through data-

driven approaches. AI and IoT provide an opportunity to 

transform traditional farming into a smart, sustainable, and 

high-yielding system, ensuring food security and reducing 

losses.  

Predicting crop yield based on the environmental, soil, water 

and crop parameters has been a potential research topic. Deep-

learning-based models are broadly used to extract significant 

crop features for prediction [4]. Early plant disease 

identification is an initial step in preventing the spread of 

diseases and pests Alharbi, & Aldossary, [5]. To detect 

diseases, the type of crop was identified first because the 

disease type changed to different crops. Conventional plant 

disease and pest identification techniques rely on manual 

observation and evaluation. It has low efficiency and accuracy 

during detection Bouali, et al.,[6].  

More technologies such as computer vision, remote sensing, 

unmanned aerial vehicle (UAV), and IoT devices are 

supplying new tools for plant disease detection based on 

automated image recognition Farooq, et al.,[7]. Hence, quality 

enhancement methods are needed to improve image 

excellence, which increases the computational complexity.  

III. PROPOSED WORK 

Step 1: Agricultural Yield Dataset 

The first step involves acquiring the agricultural yield dataset, 

which contains valuable data regarding various environmental 

factors such as temperature, humidity, soil conditions, and 

historical yield records. This dataset is essential for developing 

an AI model to predict future agricultural productivity based 

on current environmental conditions. The dataset typically 

includes columns for features like rainfall, temperature, soil 

pH, and past crop yield, which will be used to train and 

evaluate machine learning models. The data is loaded into the 

system and displayed to the user for further analysis and 

processing. 

 

Step 2: Data Preprocessing 

Data preprocessing is a crucial step where the dataset is 

cleaned and prepared for analysis. The first task is to examine 

the dataset for any null or missing values. These values can 

distort the accuracy of predictions, so they need to be handled 

either by filling them with appropriate values (mean, median) 

or removing the rows. Next, a description of the dataset is 

generated, providing statistics like mean, standard deviation, 

min, and max values for numerical features. Additionally, the 

unique values for categorical features are assessed, ensuring 

that the data is properly formatted and ready for machine 

learning algorithms. 

Step 3: Existing Random Forest Regressor 

In this step, the Random Forest Regressor (RFR) algorithm is 

implemented as a baseline model to predict agricultural yields 

based on the preprocessed data. RFR is an ensemble learning 

method that builds multiple decision trees and averages their 

predictions for a more accurate result. The model is trained 

using the training data and then evaluated on the test set. The 

performance of the model is measured using metrics such as 

Mean Absolute Error (MAE), Mean Squared Error (MSE), 

and R-squared (R²). The trained model is then saved for later 

use and comparison. 

Step 4: Proposed DAE + Gradient Boosting Regressor 

The next step proposes a more advanced approach combining 

a Denoising Autoencoder (DAE) and Gradient Boosting 

Regressor (GBR). The DAE is first used to encode the input 

data into a lower-dimensional representation, removing noise 

and enhancing the feature set for better predictive 

performance. Afterward, the Gradient Boosting Regressor is 

employed to make predictions based on the encoded data. This 

combination of deep learning (DAE) and gradient boosting 

ensures that both the complex, non-linear relationships in the 

data and the efficiency of boosting techniques are leveraged 

for more accurate yield predictions. 

 

Step 5: Performance Comparison Graph 
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Once both models (Random Forest Regressor and DAE + 

Gradient Boosting Regressor) are trained and evaluated, their 

performance metrics are compared. This step involves 

generating a performance comparison graph to visualize the 

results. The key metrics, such as MAE, MSE, RMSE, and R² 

score, are plotted for both models, allowing for a clear and 

concise comparison of their predictive capabilities. This graph 

serves as a critical analysis tool to determine which model 

performs better in terms of accuracy and reliability for 

predicting agricultural yields. 

Step 6: Prediction of Output from Test Data with DAE + 

Gradient Boosting RegressorAlgorithm 

In the final step, the trained DAE + Gradient Boosting 

Regressor model is used to predict agricultural yield on unseen 

test data. The test data is pre-processed similarly to the 

training data, including feature scaling and transformation 

using the DAE encoder. The model then predicts the yield for 

each test instance. The predicted results are appended to the 

test dataset, and the predictions are displayed for review. This 

step allows farmers or users to assess the model's performance 

in a real-world scenario and provides them with actionable 

insights based on the system's predictions. 

 

Fig. 4.1: Block diagram of proposed system. 

4.2 Workflow 

Data Preprocessing: Data preprocessing is a critical phase in 

any machine learning project, especially when working with 

real-world datasets. It ensures that the data is clean, consistent, 

and ready for use in training machine learning models. In the 

context of the agricultural yield prediction project, data 

preprocessing involves several steps: 

Data Splitting: Data splitting is another essential aspect of 

preparing data for machine learning, as it helps evaluate the 

model’s performance on unseen data. In this project, the 

dataset is divided into two main subsets: the training set and 

the test set. 

Training Set: The training set is used to train the model. It 

contains a large portion of the dataset and allows the model to 

learn the relationships between the features and the target 

variable (in this case, agricultural yield). The model uses this 

data to adjust its parameters and fit the underlying patterns in 

the data. 

Test Set: The test set is used to evaluate the model's 

performance after training. It contains data that the model has 

not seen before, simulating real-world conditions where the 

model will encounter new, unseen data. By comparing the 

predicted values with the actual values in the test set, we can 

measure the accuracy and generalization ability of the model. 

Train-Test Split Ratio: In this project, the dataset is split into 

80% training data and 20% test data using the train_test_split 

function. This ensures that the model has enough data to learn 

from, while also being evaluated on a sufficiently large set of 

test data to ensure it generalizes well. 

Resampling (Optional):In some cases, the dataset might be 

imbalanced, meaning that certain categories (e.g., low yield 

vs. high yield) are underrepresented. To address this, 

resampling techniques, such as oversampling the minority 

class or undersampling the majority class, can be used to 

ensure that the model is trained on a balanced dataset. This 

step is optional and depends on the nature of the data. 

Python 

Python is an interpreted high-level programming language for 

general-purpose programming. Created by Guido van Rossum 

and first released in 1991, Python has a design philosophy that 

emphasizes code readability, notably using significant 

whitespace.  

Python features a dynamic type system and automatic memory 

management. It supports multiple programming paradigms, 
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including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard 

library.  

• Python is Interpreted − Python is processed at 

runtime by the interpreter. You do not need to 

compile your program before executing it. This is 

similar to PERL and PHP.  

• Python is Interactive − you can actually sit at a 

Python prompt and interact with the interpreter 

directly to write your programs.  

Python also acknowledges that speed of development is 

important. Readable and terse code is part of this, and so is 

access to powerful constructs that avoid tedious repetition of 

code. Maintainability also ties into this may be an all but 

useless metric, but it does say something about how much 

code you have to scan, read and/or understand to troubleshoot 

problems or tweak behaviors. This speed of development, the 

ease with which a programmer of other languages can pick up 

basic Python skills and the huge standard library is key to 

another area where Python excels. All its tools have been 

quick to implement, saved a lot of time, and several of them 

have later been patched and updated by people with no Python 

background - without breaking. 

Modules Used in Project 

TensorFlow 

TensorFlow is a free and open source software library for dataflow 

and differentiable programming across a range of tasks. It is a 

symbolic math library and is also used for machine learning 

applications such as neural networks. It is used for both research and 

production at Google.  

TensorFlow was developed by the Google Brain team for 

internal Google use. It was released under the Apache 2.0 

open-source license on November 9, 2015. 

NumPy 

NumPy is a general-purpose array-processing package. It provides a 

high-performance multidimensional array object, and tools for 

working with these arrays. 

It is the fundamental package for scientific computing with 

Python. It contains various features including these important 

ones: 

• A powerful N-dimensional array object 

• Sophisticated (broadcasting) functions 

• Tools for integrating C/C++ and Fortran code 

• Useful linear algebra, Fourier transform, and 

random number capabilities 

Besides its obvious scientific uses, NumPy can also be used as 

an efficient multi-dimensional container of generic data. 

Arbitrary datatypes can be defined using NumPy which allows 

NumPy to seamlessly and speedily integrate with a wide 

variety of databases. 

Matplotlib 

Matplotlib is a Python 2D plotting library which produces 

publication quality figures in a variety of hardcopy formats 

and interactive environments across platforms. Matplotlib can 

be used in Python scripts, the Python and IPython shells, the 

Jupyter Notebook, web application servers, and four graphical 

user interface toolkits. Matplotlib tries to make easy things 

easy and hard things possible. You can generate plots, 

histograms, power spectra, bar charts, error charts, scatter 

plots, etc., with just a few lines of code. For examples, see the 

sample plots and thumbnail gallery. 

For simple plotting the pyplot module provides a MATLAB-

like interface, particularly when combined with IPython. For 

the power user, you have full control of line styles, font 

properties, axes properties, etc, via an object-oriented interface 

or via a set of functions familiar to MATLAB users. 

Scikit – learn 

Scikit-learn provides a range of supervised and unsupervised 

learning algorithms via a consistent interface in Python. It is 
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licensed under a permissive simplified BSD license and is 

distributed under many Linux distributions, encouraging 

academic and commercial use. Python 

Python is an interpreted high-level programming language for 

general-purpose programming. Created by Guido van Rossum 

and first released in 1991, Python has a design philosophy that 

emphasizes code readability, notably using significant 

whitespace.  

Python features a dynamic type system and automatic memory 

management. It supports multiple programming paradigms, 

including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard 

library.  

• Python is Interpreted − Python is processed at 

runtime by the interpreter. You do not need to 

compile your program before executing it. This is 

similar to PERL and PHP.  

• Python is Interactive − you can actually sit at a 

Python prompt and interact with the interpreter 

directly to write your programs.  

Python also acknowledges that speed of development is 

important. Readable and terse code is part of this, and so is 

access to powerful constructs that avoid tedious repetition of 

code. Maintainability also ties into this may be an all but 

useless metric, but it does say something about how much 

code you have to scan, read and/or understand to troubleshoot 

problems or tweak behaviors. This speed of development, the 

ease with which a programmer of other languages can pick up 

basic Python skills and the huge standard library is key to 

another area where Python excels. All its tools have been 

quick to implement, saved a lot of time, and several of them 

have later been patched and updated by people with no Python 

background - without breaking. 

IV. RESULTS & DISSCUSSION 

The research involves building an AI-powered system for 

predicting agricultural yield using IoT sensor data. The 

following steps outline the process of implementing this 

system: 

1. Data Collection 

IoT sensors are deployed in agricultural fields to collect real-

time data such as soil moisture, temperature, humidity, light 

intensity, and other environmental factors. This data is 

captured and stored in a database for further processing. 

2. Data Preprocessing 

Cleaning: Missing or corrupted data is handled by removing 

or imputing the missing values. Outliers and erroneous values 

are also detected and corrected. 

Normalization: The sensor data is normalized to ensure 

consistency and scale across all features. This step helps to 

bring all data into a similar range, improving the model's 

performance. 

Feature Engineering: Additional features, such as time of 

day, soil type, and weather conditions, are created or extracted 

from the existing data. This step helps to enrich the dataset 

and provide more meaningful information for the model. 

Data Splitting: The dataset is divided into training, 

validation, and test sets. Typically, 70% of the data is used for 

training, 15% for validation, and 15% for testing the model. 

This ensures that the model is evaluated on unseen data to 

assess its generalization capability. 

3. Model Building 

Existing Model: Random Forest Regressor 

A Random Forest Regressor is trained on the preprocessed 

data. It learns from multiple decision trees, each trained on a 

different subset of the data and features. The output of all trees 

is averaged to make the final prediction. 

The model is tuned by adjusting hyperparameters such as the 

number of trees, maximum depth of trees, and minimum 

samples per leaf to improve performance. 

Proposed Model: DAE + Gradient Boosting Regressor 
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Denoising Autoencoder (DAE): 

The DAE is trained to reconstruct clean data from noisy input. 

The model learns compressed representations of the input 

features by reducing noise and extracting relevant patterns 

from the sensor data. 

The encoder part of the autoencoder is used to produce a latent 

representation of the data, which serves as the input for the 

Gradient Boosting Regressor. 

Gradient Boosting Regressor: 

The Gradient Boosting Regressor is trained on the features 

extracted by the DAE. It sequentially builds decision trees, 

where each tree attempts to correct the residuals of the 

previous tree. The final prediction is made by combining the 

outputs of all trees in the sequence. 

4. Deployment 

● The final model is deployed as part of a web-based 

dashboard or mobile application, where farmers can 

input sensor data and receive real-time yield 

predictions. 

● Continuous updates are implemented to improve the 

model’s performance by incorporating new data and 

adjusting the model based on feedback and new 

environmental conditions. 

5. Monitoring and Maintenance 

● The performance of the deployed model is 

continuously monitored to ensure its effectiveness in 

real-world conditions. 

● Regular updates and retraining are performed using 

new data collected from the IoT sensors to keep the 

model accurate and relevant over time. 

The dataset consists of various agricultural parameters that 

influence crop yield. Each record represents an instance of 

agricultural data for a specific field, including information 

about soil quality, seed variety, fertilizer usage, weather 

conditions, and irrigation schedule. The columns in the dataset 

are described as follows: 

 

Yield_kg_per_hectare: 

The yield column contains the output of the crops, measured 

in kilograms per hectare. This is the target variable in the 

dataset and represents the crop yield, which depends on 

several factors like soil quality, seed variety, fertilizer 

application, weather conditions,and  

Irrigation practices. 

 

Fig. 1: Upload of Agricultural Yield Dataset 

Fig. 1 demonstrates the process of uploading the agricultural 

yield dataset into the graphical user interface (GUI) of the 

system. The dataset, which contains key agricultural variables 

such as soil quality, seed variety, fertilizer amount, sunny 

days, rainfall, irrigation schedule, and yield per hectare, is 

loaded into the system. Upon upload, the dataset is displayed 

within the GUI for further analysis. This step is crucial for the 

user to interact with and review the raw data before any 

processing or modeling begins. The dataset is shown in a 

tabular format within the interface, providing easy access to 

all attributes and their values for inspection and validation. 
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Fig. 2: EDA Plots of the Project 

Fig. 2 presents the exploratory data analysis (EDA) plots 

generated as part of the project. These plots provide an initial 

understanding of the relationships between various features in 

the dataset and the target variable (yield per hectare). The 

visualizations include correlation heatmaps, distribution plots, 

and scatter plots to identify patterns, trends, and potential 

outliers in the data. The EDA is essential for uncovering any 

underlying data issues and ensuring the dataset's suitability for 

modeling. It helps in visualizing how features such as soil 

quality, seed variety, and fertilizer amount affect yield and 

aids in identifying the most relevant features for model 

training. 

 

 

 

 

 

Fig. 3: Data Preprocessing in the GUI 

Fig. 3 illustrates the data preprocessing stage within the GUI 

interface. In this step, the system processes the dataset to 

handle missing values, scale numerical features, and split the 

data into training and testing sets. The GUI provides an 

interactive display where users can inspect the preprocessing 

results, such as the number of missing values for each feature 

and the distribution of scaled values. The preprocessing phase 

prepares the data by normalizing numerical values and 

ensuring consistency before feeding it into the machine 

learning models. It also includes the splitting of the dataset 

into training and testing sets, with an 80-20 split, ensuring that 

the model is evaluated on unseen data. 

 

Fig. 4: Performance Metrics and Regression Scatter Plot of 

Random Forest Regressor Model 

Fig. 4 presents the performance metrics and regression scatter 

plot for the Random Forest Regressor model. The performance 

metrics include the Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and 

R-squared (R²), which quantify the model's prediction 

accuracy. For the Random Forest Regressor, the MAE is 

0.0506, the MSE is 0.0040, the RMSE is 0.0633, and the R² 

score is 0.8235, indicating a good fit to the data with a fairly 

strong explanatory power. The regression scatter plot visually 

represents the model’s predictions against the true values, with 

points scattered around the line of equality (ideal predictions). 

This plot shows the model's ability to predict yield values 

accurately across the test data. 

 

 

 

 

 

 

Fig. 5: Performance Metrics and Regression Scatter Plot of 

DAE + Gradient Boosting Regressor Model 

Fig. 5 shows the performance metrics and regression scatter 

plot for the Optimized DAE + Gradient Boosting Regressor 

model. The performance metrics highlight the superior 

predictive capabilities of this hybrid model compared to the 

Random Forest Regressor. The MAE is 0.0249, the MSE is 

0.0011, the RMSE is 0.0329, and the R² score is 0.9523, 

indicating a significantly better fit and higher accuracy. The 

regression scatter plot illustrates the improved predictions of 

the DAE + Gradient Boosting Regressor model, with the 

predicted values closely aligning with the actual values. This 
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visual representation emphasizes the enhanced prediction 

accuracy of the DAE + Gradient Boosting approach. 

Fig. 6: Model Prediction on Test Data 

Fig. 6 showcases the model’s predictions on the test data. 

After training the machine learning models, the system makes 

predictions on a separate test dataset that was not used during 

the training process. The results are displayed within the GUI, 

allowing users to compare the predicted yield values with the 

actual values from the test data. The test data contains unseen 

instances, and the model’s ability to predict the yield values 

accurately is crucial for assessing its generalization capability. 

This figure highlights the practical application of the model in 

real-world scenarios, where the model's predictions can inform 

decision-making processes in agriculture. 

Fig. 7: Performance Comparison Graph of All Models 

Fig. 7 provides a performance comparison graph that contrasts 

the results of all models used in the project. This includes the 

Random Forest Regressor and the Optimized DAE + Gradient 

Boosting Regressor. The graph visualizes the performance of 

each model based on key metrics such as MAE, MSE, RMSE, 

and R² score. It demonstrates the clear performance advantage 

of the Optimized DAE + Gradient Boosting Regressor model, 

which shows lower error metrics and a higher R² score 

compared to the Random Forest Regressor. The comparison 

graph is an essential tool for evaluating the effectiveness of 

different modeling approaches and selecting the most suitable 

one for predicting agricultural yields. 
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